數(shù)學一線課堂選擇性必修三在哪買
一線課堂,書店一般不公開賣,都是由學校預先訂購的,所以要買還是從學校訂購。
書店一名,最早見于清明乾隆年間。在中國近代史上,書店也叫書局。書店是普及和推廣科學文化知識不可缺少的一個環(huán)節(jié)。普及文化的關鍵措施是興辦教育,而各項教育事業(yè)需要的教材,則要由書店來供應。
高二數(shù)學選修三各章節(jié)的知識點總結
數(shù)學學習其主要的目的是為了培養(yǎng)我們的創(chuàng)造性,培養(yǎng)我們處理事情、解決問題的能力,因此,對處理數(shù)學問題時的大策略、大思維的掌握顯得特別重要,在平時的學習時應注重歸納它。以下是我給大家整理的 高二數(shù)學 選修三各章節(jié)的知識點 總結 ,希望大家能夠喜歡!
高二數(shù)學選修三各章節(jié)的知識點總結1
一、映射與函數(shù):
(1)映射的概念:(2)一一映射:(3)函數(shù)的概念:
二、函數(shù)的三要素:
相同函數(shù)的判斷 方法 :①對應法則;②定義域(兩點必須同時具備)
(1)函數(shù)解析式的求法:
①定義法(拼湊):②換元法:③待定系數(shù)法:④賦值法:
(2)函數(shù)定義域的求法:
①含參問題的定義域要分類討論;
②對于實際問題,在求出函數(shù)解析式后;必須求出其定義域,此時的定義域要根據(jù)實際意義來確定。
(3)函數(shù)值域的求法:
①配方法:轉化為二次函數(shù),利用二次函數(shù)的特征來求值;常轉化為型如:的形式;
②逆求法(反求法):通過反解,用來表示,再由的取值范圍,通過解不等式,得出的取值范圍;常用來解,型如:;
④換元法:通過變量代換轉化為能求值域的函數(shù),化歸思想;
⑤三角有界法:轉化為只含正弦、余弦的函數(shù),運用三角函數(shù)有界性來求值域;
⑥基本不等式法:轉化成型如:,利用平均值不等式公式來求值域;
⑦單調(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。
⑧數(shù)形結合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結合的方法來求值域。
高二數(shù)學選修三各章節(jié)的知識點總結2
一、直線與方程
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當時,。當時,;當時,不存在。
②過兩點的直線的斜率公式:
注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;
(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
(3)直線方程
①點斜式:直線斜率k,且過點
注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1。
②斜截式:,直線斜率為k,直線在y軸上的截距為b
③兩點式:()直線兩點,
④截矩式:其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為。
⑤一般式:(A,B不全為0)
⑤一般式:(A,B不全為0)
注意:○1各式的適用范圍
○2特殊的方程如:平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));
(4)直線系方程:即具有某一共同性質(zhì)的直線
(一)平行直線系
平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))
(二)過定點的直線系
(ⅰ)斜率為k的直線系:,直線過定點;
(ⅱ)過兩條直線,的交點的直線系方程為(為參數(shù)),其中直線不在直線系中。
(5)兩直線平行與垂直
當,時,;注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。
(6)兩條直線的交點
相交:交點坐標即方程組的一組解。方程組無解;方程組有無數(shù)解與重合
(7)兩點間距離公式:設是平面直角坐標系中的兩個點,則
(8)點到直線距離公式:一點到直線的距離
(9)兩平行直線距離公式:在任一直線上任取一點,再轉化為點到直線的距離進行求解。
高二數(shù)學選修三各章節(jié)的知識點總結3
函數(shù)圖像變換:(重點)要求掌握常見基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。
常見圖像變化規(guī)律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯(lián)系起來思考)
平移變換y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過平移得到函數(shù)y=f(2x+4)的圖象。
(ⅱ)會結合向量的平移,理解按照向量(m,n)平移的意義。
對稱變換y=f(x)→y=f(-x),關于y軸對稱
y=f(x)→y=-f(x),關于x軸對稱
y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關于x軸對稱
y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關于y軸對稱。(注意:它是一個偶函數(shù))
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具體參照三角函數(shù)的圖象變換。
一個重要結論:若f(a-x)=f(a+x),則函數(shù)y=f(x)的圖像關于直線x=a對稱;
高二數(shù)學選修三各章節(jié)的知識點總結相關 文章 :
★ 高二數(shù)學必修三知識點總結
★ 高二數(shù)學選修2至3知識點總結
★ 高二數(shù)學考點知識點總結復習大綱
★ 高二數(shù)學知識點歸納總結
★ 高二數(shù)學知識點總結
★ 高二數(shù)學知識點總結詳細
★ 高二數(shù)學知識點總結歸納
★ 高二數(shù)學選修2-3排列組合知識點
★ 高二數(shù)學必背知識點總結
★ 高二數(shù)學知識點復習總結
高二數(shù)學必修三第三單元的知識點梳理
不管學什么科目,課后復習自然是少不了的,復習是對我們以往所學知識的一個鞏固提高,特別是高中數(shù)學知識點比較復雜多樣化,更需要我們抽出大量的時間進行預習、復習,下面是我給大家?guī)淼? 高二數(shù)學 必修三第三單元的知識點梳理,希望大家能夠喜歡!
高二數(shù)學必修三第三單元的知識點梳理1
有界性
設函數(shù)f(x)在區(qū)間X上有定義,如果存在M0,對于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱f(x)在區(qū)間X上有界,否則稱f(x)在區(qū)間上無界。
單調(diào)性
設函數(shù)f(x)的定義域為D,區(qū)間I包含于D。如果對于區(qū)間上任意兩點x1及x2,當x1f(x2),則稱函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的。單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱為單調(diào)函數(shù)。
奇偶性
設為一個實變量實值函數(shù),若有f(-x)=-f(x),則f(x)為奇函數(shù)。
幾何上,一個奇函數(shù)關于原點對稱,亦即其圖像在繞原點做180度旋轉后不會改變。
奇函數(shù)的例子有x、sin(x)、sinh(x)和erf(x)。
設f(x)為一實變量實值函數(shù),若有f(x)=f(-x),則f(x)為偶函數(shù)。
幾何上,一個偶函數(shù)關于y軸對稱,亦即其圖在對y軸映射后不會改變。
偶函數(shù)的例子有|x|、x2、cos(x)和cosh(x)。
偶函數(shù)不可能是個雙射映射。
連續(xù)性
在數(shù)學中,連續(xù)是函數(shù)的一種屬性。直觀上來說,連續(xù)的函數(shù)就是當輸入值的變化足夠小的時候,輸出的變化也會隨之足夠小的函數(shù)。如果輸入值的某種微小的變化會產(chǎn)生輸出值的一個突然的跳躍甚至無法定義,則這個函數(shù)被稱為是不連續(xù)的函數(shù)(或者說具有不連續(xù)性)。
高二數(shù)學必修三第三單元的知識點梳理2
一、事件
1.在條件SS的必然事件.
2.在條件S下,一定不會發(fā)生的事件,叫做相對于條件S的不可能事件.
3.在條件SS的隨機事件.
二、概率和頻率
1.用概率度量隨機事件發(fā)生的可能性大小能為我們決策提供關鍵性依據(jù).
2.在相同條件S下重復n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出現(xiàn)的次數(shù)nA
nA為事件A出現(xiàn)的頻數(shù),稱事件A出現(xiàn)的比例fn(A)=為事件A出現(xiàn)的頻率.
3.對于給定的隨機事件A,由于事件A發(fā)生的頻率fn(A)P(A),P(A).
三、事件的關系與運算
四、概率的幾個基本性質(zhì)
1.概率的取值范圍:
2.必然事件的概率P(E)=3.不可能事件的概率P(F)=
4.概率的加法公式:
如果事件A與事件B互斥,則P(AB)=P(A)+P(B).
5.對立事件的概率:
若事件A與事件B互為對立事件,則AB為必然事件.P(AB)=1,P(A)=1-P(B).
高二數(shù)學必修三第三單元的知識點梳理3
1、圓的定義
平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。
2、圓的方程
(1)標準方程,圓心,半徑為r;
(2)一般方程
當時,方程表示圓,此時圓心為,半徑為
當時,表示一個點;當時,方程不表示任何圖形。
(3)求圓方程的 方法 :
一般都采用待定系數(shù)法:先設后求。確定一個圓需要三個獨立條件,若利用圓的標準方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置。
3、直線與圓的位置關系
直線與圓的位置關系有相離,相切,相交三種情況:
(1)設直線,圓,圓心到l的距離為,則有
(2)過圓外一點的切線:
①k不存在,驗證是否成立
②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圓與圓的位置關系
通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
設圓
兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
當時兩圓外離,此時有公切線四條;
當時兩圓外切,連心線過切點,有外公切線兩條,內(nèi)公切線一條;
當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當時,兩圓內(nèi)切,連心線經(jīng)過切點,只有一條公切線;
當時,兩圓內(nèi)含;當時,為同心圓。
注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點
高二數(shù)學必修三第三單元的知識點梳理相關 文章 :
★ 高二數(shù)學必修三第三章知識點總結
★ 高二數(shù)學必修三知識點總結
★ 高二必修三數(shù)學知識點歸納
★ 高中數(shù)學必修三重點知識點復習
★ 高中數(shù)學必修三知識點歸納總結
★ 高二數(shù)學必修三統(tǒng)計知識點整理
★ 高中數(shù)學必修三知識點總結
★ 高二數(shù)學必修4第三單元重要知識點
★ 高中數(shù)學必修三公式匯總
★ 高二數(shù)學必修三概率知識點歸納
人教a版數(shù)學選擇性必修三,內(nèi)容多嗎
人教a版數(shù)學選擇性必修三,內(nèi)容不多。根據(jù)查詢相關公開信息:人教a版數(shù)學選擇性必修三,一共個章節(jié),人教A版新教材高中數(shù)學選擇性必修第三冊電子課本,預習課本可以幫助同學們夯實數(shù)學基礎,提高數(shù)學知識儲備。